Chemistry

Time: 2 hours

Note: Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each.

Q.1. Monomer A of a polymer on ozonolysis yields two moles of HCHO and one mole of CH₃COCHO.
 a) Deduce the structure of A.
 b) Write the structure of “all cis” – form of polymer of compound A.

Solution 1. (a)

(b)

“all cis” form of polymer of A

Q.2. Fill in the blanks
 a) \[^{235}\text{U}_{92} + o_{n}^{1} \rightarrow ^{137}\text{A}_{52} + ^{97}\text{B}_{40} + \ldots \ldots \ldots \ldots \ldots \]
 b) \[^{82}\text{Se}_{34} \rightarrow 2 e^{-} + \ldots \ldots \ldots \ldots \ldots \]

Solution 2. (a)

(b)

Q.3. a) Calculate the amount of Calcium oxide required when it reacts with 852 gm of P₂O₁₀.
 b) Write the structure of P₂O₁₀.

Solution 3. a) \[6\text{CaO} + \text{P}_2\text{O}_{10} \rightarrow 2\text{Ca}_3(\text{PO}_4)_2 \]

Moles of P₂O₁₀ = \[\frac{852}{284} = 3 \]

Moles of CaO = \[3 \times 6 = 18 \]

Wt. of CaO = \[18 \times 56 = 1008 \text{ gm.} \]

(b)
Q.4. An element crystallizes in fcc lattice having edge length 400 pm. Calculate the maximum diameter of atom which can be placed in interstitial site without distorting the structure.

Solution 4. In FCC, interstitial sites will be octahedral voids & tetrahedral voids.

For octahedral voids
\[
\frac{r_1}{r_2} = 0.414
\]

For tetrahedral voids
\[
\frac{r_1}{r_2} = 0.225
\]

Where \(r_1 \) = radius of atom in interstitial sites
\(r_2 \) = radius of atom arranged in FCC.

i.e. \(4r_2 = \sqrt{2}a \),

For maximum diameter of atom in interstitial site, octahedral voids will be considered.

\[
\text{Diameter} = 2r_1 = 2(0.414 \times r_2) = 2 \times 0.414 \times \frac{400}{2\sqrt{2}} = 117.1 \text{ pm}
\]

Q.5. 20% surface sites have adsorbed N\(_2\). On heating N\(_2\) gas evolved from sites and were collected at 0.001 atm and 298 K in a container of volume is 2.46 cm\(^3\). Density of surface sites is 6.023×10\(^{14}\) / cm\(^2\) and surface area is 1000 cm\(^2\), find out the no. of surface sites occupied per molecule of N\(_2\).

Solution 5. \(P_{N_2} = 0.001 \text{ atm, } T = 298 \text{ K, } V = 2.46 \text{ cm}^3 \)

By ideal gas, \(PV = nRT \)

\[
n_{N_2} = \frac{PV}{RT} = \frac{0.001 \times 2.46 \times 10^{-3}}{0.0821 \times 298} = 1.0 \times 10^{-7}
\]

Now molecules of \(N_2 = 6.023 \times 10^{23} \times 1 \times 10^{-7} = 6.023 \times 10^{16} \)

Now total surface sites available = \(6.023 \times 10^{14} \times 1000 = 6.023 \times 10^{17} \)

\(\therefore \) Surface site used to adsorb \(N_2 = \frac{20}{100} \times 6.023 \times 10^{17} = 12.04 \times 10^{16} \)

\(\therefore \) Sites occupied per molecule of \(N_2 = \frac{12.04 \times 10^{16}}{6.02 \times 10^{16}} = 2 \)

Q.6. Predict whether the following molecules are iso structural or not. Justify your answer.

(i) NMe\(_3\) (ii) N(SiMe\(_3\))\(_3\)

Solution 6. N(Me)\(_3\) \& N(SiMe\(_3\))\(_3\) are not isostructural. N(Me)\(_3\) is trigonal pyramidal while N(SiMe\(_3\))\(_3\) is trigonal planar due to back bonding.

Q.7. Identify X and Y.

\[
\text{H}^+ / \Delta \rightarrow X \xrightarrow{1. O_3} Y \xrightarrow{2. Zn/CH_3COOH} \text{Y} \rightarrow \text{NaOH} \rightarrow \text{Y}
\]
Q. 8. Which of the following disaccharide will not reduce Tollens' reagent?

a) \(\text{CH}_2\text{OH} \)

b) \(\text{HOH}_2\text{C} \)

Solution 8. In structure (P) both the rings are present in acetyl form therefore it will not hydrolyse in solution that why Fehling solution cannot react with this.

In structure (Q) one ring present in the form of hemiacetal. This will hydrolyse in solution and it can reduce Fehling solution.

Q. 9. Write balanced chemical equation for developing a black and white photographic film. Also give reason why the solution of sodium thiosulphate on acidification turns milky white and give balance equation of this reaction.

Solution 9. a) Reactions used in developing the photographic film

\[
2\text{AgBr} + \text{C}_6\text{H}_4(\text{OH})_2 \rightarrow 2\text{Ag} + 2\text{HBr} + \text{C}_6\text{H}_4\text{O}_2 \quad \text{(black silver particles, quinone)}
\]

\[
\text{AgBr} + 2\text{Na}_2\text{S}_2\text{O}_3 \rightarrow \text{Na}_3[\text{Ag(S}_2\text{O}_3)_2] + \text{NaBr} \quad \text{(sensitive, unexposed emulsion, Hypo solution)}
\]

b) \(\text{Na}_2\text{S}_2\text{O}_3 + 2\text{H}^+ \rightarrow 2\text{Na}^+ + \text{H}_2\text{SO}_3 + \text{S} \downarrow \quad \text{(colloidal sulphur)}
\]

Q. 10. \(\text{Fe}^{3+} + \text{SCN}^- \quad \text{aq} \rightarrow \quad \text{Fe(SCN)}(\text{H}_2\text{O})_5^{2+} \quad \text{(A, blood red)} \)

Identify A and B.

a) Write IUPAC name of A and B.

b) Find out spin only magnetic moment of B.
IIT-JEE 2005-M-4

\[\text{[Fe(SCN)(H_2O)_5]^{2+} + 6F^-} \rightarrow \text{[FeF_6]^{3-} + SCN^- + 5H_2O} \]

a) Pentaaquathiocyanato iron (III) ion
hexafluro ferrate (III)

b) Magnetic moment = \(\sqrt{n(n+2)} = \sqrt{35} = 5.92 \text{ B.M.} \), where \(n \) = number of unpaired electrons

Q.11. \(2X(g) \rightarrow 3Y(g) + 2Z(g) \)

<table>
<thead>
<tr>
<th>Time (in Min)</th>
<th>0</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial pressure of X (in mm of Hg)</td>
<td>800</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

Assuming ideal gas condition. Calculate
a) Order of reaction
b) Rate constant.
c) Time taken for 75% completion of reaction.
d) Total pressure when \(P_x = 700 \text{ mm} \).

Solution 11. \(2X(g) \rightarrow 3Y(g) + 2Z(g) \)

a) By the given data, we can observed that \(t_{1/2} \) of the X is constant i.e. 100 min. therefore order of reaction is one.

b) Rate constant \(K = \frac{0.693}{t_{1/2}} \)

\[= \frac{0.693}{100} = 6.93 \times 10^{-3} \text{ min}^{-1} \]

c) Time taken for 75% completion of reaction = 2 \(t_{1/2} \)
d) \(2X \rightarrow 3Y + 2Z \)
Initial pressure 800 0 0
At any time 800 – x 3/2 x x
Given 800 – x = 700 mm
\(x = 100 \text{ mm} \)
Total pressure = 700 + 150 + 100 = 950 mm

Q.12. a) Calculate velocity of electron in first Bohr orbit of hydrogen atom (Given \(r = a_0 \)).
b) Find de-Broglie wavelength of the electron in first Bohr orbit.
c) Find the orbital angular momentum of 2p orbital in terms of \(h/2\pi \) units.

Solution 12. a) \(v = \frac{nh}{2\pi mr} \)
\(r = a_0 = 0.529 \text{ Å} \)

\[= \frac{nh}{2\pi mr} = 2.18 \times 10^6 \text{ m/sec} \ (n = 1) \]

b) \(\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.18 \times 10^6} = 0.33 \times 10^{-9} \text{ m} = 3.3 \text{ Å} \)

c) For 2 p value of \(\ell = 1 \)

Orbital angular momentum = \(\sqrt{\ell(\ell + 1)} \frac{h}{2\pi} \)

\[= \sqrt{2} \frac{h}{2\pi} \]

Q.13. \(C_6H_5NO \rightarrow _{NaNO_2\text{HCl}}^{\text{Xr}} \rightarrow Y \) (Tertiary alcohol + other products)

(Optically active)
Find X and Y. Is Y optically active? Write the intermediate steps.
Solution 13.

Q.14. Give reasons:

a) i) CH_3CBr $\xrightarrow{\text{CuSO}_4\text{H}_2\text{O}}$ $\text{CHOH} (\text{aq})$ in acidic solution

ii) CH_3CBr $\xrightarrow{\text{CuSO}_4\text{H}_2\text{O}}$ $\text{CHOH} (\text{aq})$ in neutral solution

b) i) FCH_2NO_2 $\xrightarrow{\text{NaOH(aq)}}$ $\text{F} (\text{liberated})$

ii) FCH_2NO_2 $\xrightarrow{\text{NaOH(aq)}}$ F is not liberated

c) i) H^+ $\xrightarrow{\text{HNO}_3\text{aq}}$ CNO_2 $\xrightarrow{\text{H}_2\text{SO}_4\text{aq}}$ NO_2

ii) NO_2 $\xrightarrow{\text{HNO}_3\text{aq}}$ CNO_2 $\xrightarrow{\text{H}_2\text{SO}_4\text{aq}}$ NO_2

d) $\text{C}_3\text{H}_5\text{N}_2$ $\xrightarrow{\text{Pd} / \text{C}}$ is formed but not $\text{C}_3\text{H}_5\text{N}_2$.
Solution 14.

(a) (i) \[
\begin{align*}
\text{H}_5\text{C}_6\text{C} & \xrightarrow{\text{C}_6\text{H}_5\text{Br} (\text{acid})} \text{H}_5\text{C}_6\text{C} \\
\text{CH}_3 & \quad \text{H}_3\text{C}_6\text{OC}_2\text{H}_5 \quad + \text{HBr (acid)}
\end{align*}
\]

(ii) No reaction

(b) (i) \[
\begin{align*}
\text{Br} & \quad \text{CH} \quad \text{CH}_3 \\
\text{OH} & \quad \text{O}_2\text{N} \\
\text{F} & \quad \text{CH}_3 \quad \text{NO}_2
\end{align*}
\]

This is a bimolecular reaction. Rate of this reaction is being enhanced by presence of electron withdrawing groups at ortho and para positions.

(ii) \[
\begin{align*}
\text{F} & \quad \text{CH}_2\text{NO}_2
\end{align*}
\]

Bimolecular mechanism is not possible in this case.

(c) (i) Due to presence of lone pair on nitrogen atom NO group is electron donating and ortho, para directing.

(ii) \[
\begin{align*}
\text{NO}_2 & \text{group is electron withdrawing and meta directing.}
\end{align*}
\]

(d) Due to reduction of central ring, three four membered antiaromatic rings become stable while on reduction of terminal ring only one antiaromatic ring can be stabilized.

Q.15.

Brown fumes and pungent smell

Find A, B, C and D. Also write equations A to B and A to C.

Solution 15.

(A) H\textsubscript{2}SO\textsubscript{4}

(B) Br\textsubscript{2}

(C) NO\textsubscript{2}\textsuperscript{\textcircled{B}}

(D)

Reactions involved are:

\[
\begin{align*}
2\text{H}_2\text{SO}_4 & + 2\text{NaBr} + \text{MnO}_2 \quad \rightarrow \quad \text{Br}_2 & + \text{Na}_2\text{SO}_4 & + \text{MnSO}_4 & + 2 \text{H}_2\text{O} \\
\text{H}_2\text{SO}_4 & + \text{HNO}_3 \quad \rightarrow \quad \text{HSO}_4^- & + \text{NO}_2\textsuperscript{\textcircled{B}} & + \text{H}_2\text{O}
\end{align*}
\]
IIT-JEE 2005-M-7

Q.16. (B) Moist air → MCl₄ (M = transition element (purple color))
 white fumes having pungent smell
 (D) Explosive
 Identify the metal M and hence MCl₄. Explain the difference in colours of MCl₄ and A.

 Solution 16. M = Ti
 A = [Ti(H₂O)₆]³⁺
 B = TiO₂
 Ti(⁺IV) ion contains no d-electrons, while d → d transition of single electron of Ti(⁺III) will cause
 colour change.

Q.17. \(\mu_{obs} = \sum \mu_i x_i \)
 Where \(\mu_i \) is the dipole moment of stable conformer and \(x_i \) is the mole fraction of that conformer.
 a) Write stable conformer for \(\text{Z} \text{CH}_2 \text{CH}_2 \text{Z} \) in Newman’s projection.
 If \(\mu_{solution} = 1.0 \) D and mole fraction of anti form = 0.82, find \(\mu_{Gauche} \).
 b) Write most stable meso conformer of \(\text{CHDY} \text{CHDY} \)
 If (i) \(Y = \text{CH}_3 \) about \(\text{C}_2 \text{C}_3 \) rotation and (ii) \(Y = \text{OH} \) about \(\text{C}_1 \text{C}_2 \) rotation.

 Solution 17.a)

 Mole fraction of anti form = 0.82
 Mole fraction of Gauche form = 0.18
 \(\mu_{obs.} = 1 \)
 \(1 = \mu_{(anti)} \times 0.82 + \mu_{(Gauche)} \times 0.18 \)
 \(\mu_{(anti)} = 0 \)
 \(\therefore 1 = \mu_{(Gauche)} \times 0.18 \)
 \(\mu_{Gauche} = \frac{1}{0.18} = 5.55 \text{ D} \)
Q.18. a) Calculate ΔG^0 of the following reaction

$$\text{Ag}^{+}_{(aq)} + \text{Cl}^{-}_{(aq)} \rightarrow \text{AgCl(s)}$$

Given

- ΔG^0 (AgCl) = -109 KJ/mole
- ΔG^0 (Cl$^-$) = -129 KJ/mole
- ΔG^0 (Ag$^+$) = 77 KJ/mole

Represent the above reaction in form of a cell.
Calculate E^0 of the cell. Find $\log_{10}K_{sp}$ of AgCl.

b) 6.539×10^{-2} g of metallic Zn (amu = 65.39) was added to 100 ml of saturated solution of AgCl.

Calculate $\log_{10}K_{sp}$ of AgCl.

Solution 18. Cell reactions are

$$\text{Ag} + \frac{1}{2} \text{Cl}_2 \rightarrow \text{AgCl}$$ (i)

$$\text{Ag} \rightarrow \text{Ag}^+ + e^-$$ (ii)

$$\frac{1}{2} \text{Cl}_2 + e^- \rightarrow \text{Cl}^-$$ (iii)

$$\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl}$$ (i - ii - iii)

hence cell representation is $\text{Ag | Ag}^+ | \text{AgCl | Cl}^- | \text{Cl}_2, \text{Pt}$

$$\text{Ag}^{+}_{(aq)} + \text{Cl}^{-}_{(aq)} \rightarrow \text{AgCl(s)}; \quad \sum \Delta G^0_P = - \sum \Delta G^0_R$$

i) $\Delta G^0 = -109 - (-129 + 77) = -109 + 129 - 77 = 20 - 77 = -57 = -1 \times F \times E^0$

$-57 = -1 \times 96500 \times E^0$

$E^0 = \frac{57000}{96500} = 0.59$ Volts

ii) $-57 = -2.303 RT \log K_0$

$\log K_0 = \frac{57 \times 1000}{2.303 \times 8.314 \times 298}$

$\log K_0 = 9.98 \approx 10$

$K_0 = 10^{10}$
\[\therefore K_{sp} = \frac{1}{K_0} \]
\[\therefore K_{sp} = 10^{-10} \]
\[\therefore \log K_{sp} = -10 \]

iii) \(10 \text{ AgCl(s)} \xrightleftharpoons{\text{S}} \text{Ag}^+ (aq) + \text{Cl}^- (aq) \)
\[10^{-10} = S^2 \]
\[\therefore S = 10^{-5} \text{ m} / \text{L} \]

b) When \(\frac{65.39 \times 10^{-2}}{65.39} = 10^{-3} \) moles of Zn has been added,

\[2\text{Ag}^+ + 2e \rightarrow 2\text{Ag}; \ E^0 = 0.80 \text{V} \]
\[\text{Zn} \rightarrow \text{Zn}^{2+} + 2e; \ E^0 = 0.77 \text{V} \]

\[2\text{Ag}^{2+}_{(aq)} + \text{Zn}_{(s)} \rightarrow \text{Zn}^{2+}_{(aq)} + 2\text{Ag}_{(s)}; \ E^0 = 1.57 \text{V} \]

\(10^6 \) mole \(10^{-3} \) moles

\[\log_{10}(K_{eq}) = 52.8 \]

Therefore, this reaction will move in forward direction completely. Hence moles of Ag formed will be \(10^{-6} \)

At equilibrium, \((E_{cell} = 0) \)

\[E_{\text{cell}} = \frac{+0.0591 \times \log_{10} \left[\frac{\text{Zn}^{2+}}{\text{Ag}^+} \right]^2}{2} \]
\[\therefore 1.56 \times 2 = \log_{10} \left[\frac{\text{Zn}^{2+}}{\text{Ag}^+} \right]^2 = 52.8 \]

Note: FITJEE solutions to IIT-JEE, 2005 Mains Papers created using memory retention of select FITJEE students appeared in this test and hence may not exactly be the same as the original paper. However, every effort has been made to reproduce the original paper in the interest of the aspiring students.